

Data sheet Tungsten High Density Alloy (WSM)

Significant Characteristics and Applications

High shielding against X-ray and Gamma radiation

Good machinability Very high density

High surface quality

Very good dimensional stability

Very good mechanical properties

Tungsten High Density Alloy (WSM) is a composite material with a very high percentage of Tungsten. Nickel-Iron is used as a composite metal, respectively for paramagnetic applications Nickel-Copper is used instead. WSM is produced by mixing, pressing and sintering of the corresponding metal powder portions. Tungsten High Density Alloy and pure Tungsten have a lot of characteristics in common as for example the very high density or the very good shielding against X-ray radiation, however the machinability of WSM is much easier. WSM is both at processing and application, neither polluting nor harmful.

Typical Applications of Tungsten High Density Alloy (WSM)

Shielding against X-ray and Gamma radiation, collimators, balance and counterbalance weights (replacement of Lead), ballistic projectiles, mould inserts and ejectors for Aluminum and Magnesium pressure die-casting moulds, electrical contacts, electric resistance electrodes, tool holder, vibration-reducing drilling rods and others.

ASTM Standard Specifications

ASTM B777 (Tungsten Base, High-Density Metal) AMS 7725E (AMS T-21014A) MIL-T-21014D

517

3-15

25-34

517

2-10

30-35

Properties of the most important Material Types WSM WSM WSM WSM WSM W90NiFe/W90NiCu W92.5NiFe/W92.5NiCu W95NiFe/W95NiCu W97NiFe W90NiFeMo Class 1 Class 2 Class 3 Class 4 (no standard) **Chemical Composition** Tungsten (W) [%] 90 92.5 95 97 90 Nickel (Ni) [%] 6 5.25 3.5 2.1 4 2 Iron (Fe)/Copper (Cu) [%] 4 2.25 1.5 0.9 Molybdenum (Mo) [%] 4 **Physical Properties** 17.75-18.35 17.10-17.30 Density [g/cm³] 16.85-17.25 17.15-17.85 18.25-18.85 Thermal Conductivity $[W/m \cdot K^{-1}]$ 70/95 75/100 85/105 90/115 80 Coefficient of Thermal Expansion [10⁻⁶ K⁻¹] 5.8 5.5 5.2 5.0 5.3 Specific Electrical Resistivity $[10^{-6} \Omega \cdot m]$ 0.17/0.13 0.15/0.12 0.13/0.11 0.10/0.09 **Mechanical Properties** E-Modulus [GPa] 320-340 340-360 350-380 360-380 350 Tensile Strength R_m [MPa] 750-1200 750-1400 720-1200 680-1000 700-1000

517

5-25

25-33

Typical values, partly standardized according to ASTM B777

* Higher values allowed for deformed or aged material

** Minimum value according standard (Class 1-4), deviations allowed for paramagnetic type WNiCu

Range of Products

Yield Strength Rp0.2 [MPa]**

Elongation A [%]

Hardness [HRC]*

Rods, squares, plates, counterbalance weights, shielding and finished parts according to drawings

650

2-15

24-32

517

5-30

24-32